Tuesday, June 16, 2015
Caroline Chaboo

Branch loaded with epiphytes at Monteverde
Bromeliads, orchids and ferns
Emma and Hannah on canopy walkway
Looking down at tree ferns in forest understorey
One characteristic of rain and cloud forests are the diversity of epiphytes, life forms growing on top of other life forms. ‘Aerial garden’ is used nowadays to refer to roof-top gardens sprouting on little-used spaces of high-rise buildings around the world. Classically, it has referred to the plethora of plants that assemble on the trunks and limbs of rainforest trees. ‘Aerial aquaria’ are the bromeliads that accumulate rainwater, soil and animal communities at the base of the rosette of leaves.  Canopy walkways, aerial traps, open-air gondolas, and zip-lining are frequently being constructed for scientists and nature lovers to learn about these hard-to-reach forest layers.  

In our daily walks along trails at the Zurqui de Moravia site near San Jose and here in the Monteverde Cloud Forest, we take advantage of fallen trees and broken tree limbs to test out our botany knowledge, add a few more families to our life lists, and poke around for hidden snakes, frogs, and especially insects.  I don’t have the heart to peel off the carpet of mosses, filmy ferns, and flowering orchids to find beetles and bugs.  Documenting the arthropod community living in the phytotelmata of a bromeliad is destructive sampling – tearing leaves apart and using forceps to spread the soil. Fortunately, this is not the focus of my current research nor permitted by my Costa Rica research permit; thus, I am spared the conflict of attacking these gorgeous bromeliads for cryptic insect treasures.


Tuesday, June 16, 2015
Hannah Boyd

Going on a study abroad program for field research can be a great opportunity for Biology majors, especially those that are Organismal biology or Ecology and Evolutionary Biology. On trips like this you can get field experience, conduct some of your own research, and get funding for your research and the trip through awards. Normally you would start a personal research project based on your personal interest (herpetology, ornithology, etc.), but sometimes on trips like these because of it being a first time and because of permits, it may be easier to find a research project in the field that the professor leading the course is focusing on. For example, although I am primarily interested in herpetology (study of reptiles and amphibians) because I am not too familiar with permits yet I have been conducting research on insects -- the professor I have gone on the study abroad trips with is an entomologist (studies insects).

So to begin, I would suggest meeting with your professor that is leading the trip and ask if they have any projects that you can do personally in mind, or to try and come up with your own research idea based on the research the professor concentrates on. From there you can come up with a research proposal to collect your ideas/info on what you want to research and how you are going to perform that research, and to present for obtaining research awards. At KU, good places to look for ways to fund your research are the Center for Undergraduate Research’s Undergraduate Research Award (UGRA), which is offered for the spring, summer, and fall semesters, and at the various awards that are posted on the undergraduate biology website.  The ways to apply for these awards will be listed and are easy to follow. After applying and while waiting on the awards you have time to plan out the specifics of your research pertaining to the trip such as what traps you need to get, how you will collect the specimens, etc.

After the awards come through, which hopefully they will, you can then go out and get these things you will need for your research and the trip. During the trip you perform the basics of your research and collections, then after this is done you will change your research proposal to a manuscript and fill in the data for the research and extra information as you go along processing your collections and information. When finished with the manuscript you can then try to get it published and give presentations on your data either at KU or other places as well.

Tuesday, June 16, 2015
Daniel Cirotski

A common expectation in education involves accepting the information delivered in lectures and conveyed in textbooks. Students must accept that complicated chemical reactions proceed as described in the literature or that their ecology professor accurately describes how a rainforest functions. After all, authors and professors providing these educational materials devote their lives to investigating these subjects; why would anyone doubt their credulity? However, this often means that students are deprived of direct contact, only learning things indirectly via photographs or perhaps video footage as visual aids. I was exhilarated to witness one such phenomenon while touring the University of Costa Rica where the campus is filled with the extensively researched and tropically endemic leaf-cutting ants. Prior to this field expedition, I had only read of these extraordinarily complicated specimens and learned of them in KU biology courses like Principles of Organismal Biology (BIOL 152) and Evolutionary Biology (BIOL 412). 

Leaf-cutter ants are tropical creatures that chew off the foliage of plants and transport the leaves back to their nest where they use the leaves to cultivate a fungus garden. In the picture above, you can see a group of leaf-cutter ants transporting nutritional leaves into their nest to cultivate their fungus garden. These colonies can consist of up to four million individuals. This fungus garden is what the ant colony uses to feed their maturing larvae.

This animal-fungus relationship is a typical example of a phenomenon called mutualism in which two species directly interact with each other in ways that substantially benefits both parties. However, this system is even more interestingly intricate. A separate, microscopic fungus, which I will refer to as a mold for the sake of distinction, parasitizes the fungus garden that the ants depend on for food. In response to this pest, these gardener ants have developed a pesticide to treat their garden to kill the mold. Within the crevices of the ant’s exoskeleton, colonies of antibiotic-producing bacteria reside and synthesize chemicals that prevent the garden from being destroyed by the parasitic mold. This interaction is suspected to have coevolved along with ants during their evolutionary history (Currie et al. 2006).

When this quadripartite system of symbiotic relationships was discovered, it excited biologists due to its embodiment of several different biological phenomena—mutualism, parasitism, and coevolution. Indeed, this system remains a developing corner of research and proves to be even more complicated than originally thought. It is exciting to observe a famous textbook model during my travel in Costa Rica.

Reference: Cameron R. Currie, Michael Poulsen, John Mendenhall, Jacobus J. Boomsma, and Johan Billen. “Coevolved Crypts and Exocrine Glands Support Mutualistic Bacteria in Fungus-Growing Ants.” Science 6 January 2006:  311 (5757), 81-83. [DOI:10.1126/science.1119744]

Tuesday, June 16, 2015
John Kaiser


When most people think of herding, an image of a cowboy walking a herd of cattle across an open plain often comes to mind. The insect world, however, has a far more intriguing example of herding.

Despite having been in Costa Rica for only a few days, several groups of herding ants have been discovered in the various sites that the group visited. Looking from an outsider’s perspective, there seemed to be nothing more than a small size group of animals nestled together under the branch of a tree. Upon closer inspection however, one can truly appreciate the naturalistic relationship between the herding ants and their “cattle.” While out on the University of Costa Rica campus, the first group of herding ants was uncovered (see photo at left, by Kyle Clark). The animals being herded were the larval( or nymph) form of Florida, burrowers that dig into the branches to suck the nectar out of the tree. Because the branch contains high amounts of water, the bugs that are absorbing nutrients from the branch release a large volume of sugar filled urine. As these larvae suck out and secrete the excess sap for the ants to consume, the ants patrol the branch, protecting their herd from danger. The larvae continue to eat, the low nutrition-to-liquid ratio quickly leads to an excess of sugary liquid that develop around the animal’s rear. The patrolling ants can then “milk” their cattle, consuming the nectar off the larvae’s body.

The following day, the exact same interaction between more herding ants and aphids were observed on the stem of another small plant (see photo by John Kaiser, below). This "ant herding" interaction between the two species is a text book example of mutualism because both the organisms benefit greatly from the others exisistence and production. Relationships like these are truly fascinating to us because it shows how two organisms can co-evolve to survive and be successful! - Kyle Clark and John Kaiser

Monday, June 15, 2015
Kaitlin Neill

liverwortsSo many people go into classes and don’t retain any of the information because they don’t care about it. They do not think that they need to know it.  I felt that way when we learned about plants in Principles of Organismal Biology, but being in the cloud forests of Costa Rica have shown me so many things that we learned about, such as liverworts and ferns.  

This experience has demonstrated that entomologists need to know a good deal of botany.  We had a seminar by mammalogist/ecologist Erin Kuprewicz about her work with mammals and insects and their interactions with plants, titled "Seed Hoarding, Seedling Survival and Forest Dynamics."  She needed to know a great deal about the plant life cycle for her study.  This study abroad has given me a new respect for other disciplines that many people had previously dubbed unnecessary for their own field.

Carlos Garcia-Robledo also gave a seminar titled "Climate Change, Invasive Plants, and the Colonization of Novel Plants by Insect Herbivores."  He brought up a phone application called LeafSnap (there is also a LeafSnap UK).  This app is so cool. What you do is take a picture of a leaf and using 16 points (like a fingerprint), it will identify the species of plant!  It will also connect your location to the plant so that they can see where these plants are!  They have used it to track migration of plants across North America.  

One side note:  Tomorrow we are going to the beach!  Many of us have never been to the Pacific Ocean before and one of us has never been to any ocean before. I am looking forward to the beach and his reaction!  We also got to watch Jurassic World (for only $4).  Apparently, the islands are actually (fictionally) off the coast of Costa Rica. I nearly cried at the beginning because it was so beautiful and amazing (the same reason I cried through most of How to Train Your Dragon 2) and because I was actually there!!!  This place is incredible and full of nature.  There is a creek running through the University of Costa Rica campus and a family of sloths living there!  (Dr. Chaboo tried to trade them for KU squirrels!).

Monday, June 15, 2015
Caroline Chaboo

I visited Monteverde in June 1994, as a student in a field course led by former KU professor, Dr. Michael Greenfield. This was before my own current students here were born! Back then I was enchanted by the forest, its birds awaking me as they began singing from about 4 am, by the clouds drifting in with their misty moisture, and the overwhelming diversity of plants. The old field station inside the reserve was a wooden 2-story construction, with poorly lit rooms and scary showers. My student companions and I then complained of the wet and cold, while enjoying being far from home in this extraordinary forest. 

In 1951, 11 American Quaker families migrated to this area in protest of the Korean War.  Costa Rica had abolished its army and was an attractive destination. As the community established and grew, developing a low-key farming model, biologists began arriving for research. The reserve was established in 1972 to protect one of the world’s most diverse and virgin forests, with 6 ecological life zones and more than 2500 species of plants.

Today, Monteverde has grown, like Costa Rica, into a super-successful model of nature tourism and conservation.  The road, now paved, passes through the towns of Santa Elena and Monteverde.  My jaw dropped with the number of shops and hotels.  The new field station offers fine dining, its own gift shop, and a small army of workers and guides.  The forest is still a wet and cold place and the station still has heart-stopping frigid showers. 

It is a remarkable site to view the busloads of school groups and families and their uniformed guides arriving early, even before 7am, paying the entrance fees and heading off on the trails. More wondrous is that over 70,000 visitors come here annually to learn about biology and ecology!

Friday, June 12, 2015
Kristen Bontrager

Note: this post is one of dozens written by students participating in a 2015 field course in Costa Rica. The entire series is here

Villa Vanilla is a sustainable tropical spice farm focusing on growing their plants with a biodynamic approach. The farm is located near the beautiful Manuel Antonio national park and is over 150 acres, with 27 of those acres devoted to agriculture production. While at Villa Vanilla our class was given a personal tour by the owner himself, Henry. 

During our tour Henry gave us a glimpse of what it means to be a sustainable farm including the history of Villa Vanilla. Sustainability begins with the soil. All waste is composted and monitored to ensure that the compost stays at the optimal temperature. Having a healthy   compost eliminates the need for fertilizers. A brief history of the farm was given. During which we learned that this thriving spice farm once used to be a pasture! The owners had to turn the soil from a fungus dominated soil to a bacteria dominated soil, to encourage growth of trees. This process took years to accomplish.

The tour then led us to the vanilla beans! Vanilla is an orchid which has to be hand pollinated in order for the bean to be produced. This process of hand pollination is what makes vanilla expensive. 
Next on the tour were cocoa and the process of turning raw cocoa into the sweet decadent chocolate which we know and love. The cocoa beans must be dried and fermented before they are processed and combined with vanilla and true Ceylon cinnamon (which is bark of a tree!) to make fine chocolate.  
Before we left Villa Vanilla we were given teas and desserts prepared by the pastry chef. The desserts began with gourmet chocolates made entirely from the spices grown on Villa Vanilla, next was iced cinnamon tea made with true Ceylon cinnamon. As were finishing the tea we’re given an incredible light, creamy vanilla cheesecake. If it couldn’t get better, we are served vanilla ice cream made in house with a cookie. Those of us that were brave enough were offered hot chocolate with cayenne pepper.                                                             

After the desserts and tea we walked to the on-site spice shop where we were able to purchase these sustainable crops. As the class is prepared to get onto the bus and contemplate what we wanted for lunch, we had yet another surprise, a traditional Costa Rica meal prepared and waiting for us.  The meal consisted of rice and beans, marinated veggies, a fresh salad with carne, a slow cooked marinated beef. 
Being at Villa Vanilla taught me a lot, from the process of hand pollinated vanilla to the difference of cocoa and chocolate. Most importantly I got to experience first-hand the quality of food that can be grown and processed on a sustainable farm.

Friday, June 12, 2015
Caroline Chaboo

The banana family, scientifically called Musaceae, comprises two genera and about 80 species from Africa and Asia.  Edible bananas and plantains both belong to the genus Musa.  The bananas we eat do not grow on a banana "tree".  Rather, the plant is an herb, with an underground rhizome, a "stem" made of tightly-packed stems of the large showy leaves, and the inflorescence where each flower produces one edible banana.  Bananas are thought to have been domesticated about 8000 BC in southeast Asia; those soft tiny black specks at the center of the banana fruit are sterile - they cannot be planted for new plants.  The plant forms suckers (root sprouts) that help create a clump of banana plants or that are separable for new plants.  While bananas are eaten raw, plantains must be cooked.  Both are delicious and of immense value in the tropical larder.  Scientists believe that these edible bananas are actually hybrids from two wild species, Musa acuminata and Musa balbisiana.  Costa Rica is a major exporter of bananas; forests have been cut to grow large monocultures and high pesticide use is implicated as a threat to caiman populations.

Banana plants are beautiful!  It is not surprising that we see ornamental bananas commonly planted along roads and in gardens -  those big showy leaves and big colorful infloresences bring that lush "tropical" touch.  One spectacular introduced ornamental banana is Musa velutina.  I noted this beauty commonly grown on our route and I am wondering if native arthropods on native Zingiberales can expand their host range to this exotic.  I also wonder if the viable seeds of M. velutina can grow - perhaps spread in bird droppings.  It is not uncommon for beautiful garden plants to break free, run rampant, and become scourges, no matter how "pretty" they appear.

Musa velutina, an introduced ornamental banana growing in Costa Rica
Musa velutina seeds are viable, unlike the bananas we eat
Bird food!

Friday, June 12, 2015
Tim Mayes

Tim MayesBefore the start of the program I had to pleasure of traveling around Costa Rica with my dad. It was an experience unlike any I have had before. First off I loved all the different chances to experience the difference in culture. For a little while we lived with a Costa Rica family. That was a very eye opening experience, because it showed me that their everyday life isn't that different from ours in the states. Also, eating home cooked food every day we were with them gave me good insight to the typical meals; breakfast never changed, and dinner was essentially the same every time but with a different protein. The other thing I now find very cool is the plants. When I was traveling with my dad I saw a lot of the plant order that we are here to study and didn't even know it. However, now that I have some field experience under my belt I realize I was surrounded by them. I didn't realize how abundant they were here, and I never would have guessed at all the different organisms that live on the plants. I'm looking forward to the rest of our research. All in all it has been a great time so far, and my favorite place was the Manuel Antonio National Park, so I am excited to be returning there for the weekend.

Friday, June 12, 2015
Kayla Yi

Note: this post is one of dozens written by students participating in a 2015 field course in Costa Rica. The entire series is here

When I told friends and family members about the field biology program in Costa Rica, I was usually asked what sort of work I would be doing and what I would be studying. But once the term ‘zingiberales’ or the mere mention of insects was thrown into the conversation, the enthusiasm died down.
There is often the idea that biology is a secluded island cut off from the rest of the world where the inhabitants speak a strange language that only other biologists can understand. Because of this, many people assume that science is far removed from their lives and is impossible to understand. But biology and research both have long lasting implications for many difference disciplines. Rather than an island, biology is a web that branches out toward math, reading and even the arts.
As a biology student also interested in art, I am working on a project to combine art + science and bridge the gap between those who study biology and those who do not. I plan to create cut-away sculptures of zingiberales to show what types of environments these plants create for other organisms. By illustrating or visualizing the research done in this field biology program, other people may gain a better understanding without feeling intimidated by scientific papers. In doing this project, I hope to not only teach others about biology but to also encourage them to study abroad and conduct research of their own.