Vertebrate Paleontology

Wednesday, October 15, 2014

Behind the Research: Identifying a New Species of Fossil Fish

A fundamental part of being a scientist is publishing your research. Scientists ask questions, formulate hypotheses, rigorously test these hypotheses, and publish their research and their results. Other people can then read these results and build off of these studies, either to question or refute the findings, or to use the findings to ask other questions. It is how science grows and evolves. 

What almost all scientific publications lack, however, is the flair, the backstory, and general behind-the-scenes action that is part of everyday research. Scientific publications are whittled down to the most concentrated version, filled with the jargon of the discipline, and stripped of any extraneous behind-the-scenes anecdotes. So while any given scientific paper can be exciting to a scientist who wants to learn more about the organism or the methods addressed, they can be a bit unfriendly to a general reader.

So for fun, I have decided to tell some behind-the-scenes stories of the research I do, in the context of my published papers. Hopefully I give you a sense of what it is really like to be a paleontologist, and the work that is involved. 

I’ll begin with my two solo-authored papers that I published in 2013. The papers can be found here and here, and if you cannot access those journals, please contact me at szgibson@ku.edu and I will send you a PDF.

These two papers establish a new genus and two new species of fishes within a group called semionotiforms. Semionotiforms are an extinct group of fishes, but are closely related to living gar, and like gar, their bodies were covered with thick enamel scales (ganoid scales). Semionotiforms are found in geologic deposits worldwide, and range in age from Middle Triassic (~237 million years ago) to Early Cretaceous (~145 million years ago). A lot of variety occurs in semionotiforms in the shape of the body, the characteristics of the skull, the teeth, etc., and part of my research is to figure out what makes these particular fishes different from other species that have been described in the literature by other scientists. So you could say that my hypothesis for these studies is that these fishes represent new species, and I am testing that hypothesis by comparing the anatomy and morphology of these fishes to other semionotiform fishes to see if my hypothesis is correct or incorrect.

 

Some of the fossil specimens I work on are from museum collections, such as the American Museum of Natural History (AMNH) and the Smithsonian and were collected in the 1950s and 1960s, yet remained in these collections unstudied and undescribed for decades. I began working on these fishes in 2006, when I worked at the St. George Dinosaur Discovery Site (SGDS) as an undergraduate student intern and later as the prep lab and collections manager. The crew of staff and volunteers from SGDS had just gone out to a site in southeastern Utah and collected hundreds of fossils (outlined in Milner et al., 2006), but most of these fishes were not identified. So as I started cleaning the fossils (fossil prep—to be discussed in a later blog!), I started looking for characteristics that defined them as either new or belonging to a described species of semionotiform fish. While I worked on the new specimens, I looked at older literature, in particular a (1967) paper by an AMNH paleontologist Bobb Schaeffer, who mentioned collecting many semionotiforms from the same area but didn't describe them or give them names. So, in 2008, I went to the collections of the AMNH to look at those old specimens collected decades before and reexamined them, seeing which of them could be the same species as the new specimens the SGDS crew had just collected. I identified at least two different species, though there are likely more than that.

 

Now, identifying a new species is more than just a “Eureka!” moment. A scientist cannot know what is new unless he/she knows what already exists, and so scientists have to be very familiar with other scientists’ work in the field. An inordinate amount of any scientist’s time is spent reading books and papers, and I spent months pouring over scientific literature, some as old as 1820, to find the characteristics of other semionotiforms. As I looked at each bone on the fossil fishes from the AMNH and those newly collected from SGDS, I compared it to the same bones in other semionotiform fishes, and I had to look for similarities and differences. Eventually, I found a suite of anatomical and morphological characters that distinguished these fishes from all other semionotiform fishes, and I had enough to publish two papers on two distinct species. In these papers, I had to give an exhaustively detailed description of every single bone, and I mean EVERY bone (these fishes have hundreds of bones, dozens in their skull alone!) that I could see on the specimens, because other scientists, when trying to identify new species of their own, may turn to my work for comparison, and so my papers have to be provide as much anatomical detail as possible!

Next time….naming a new species!!

References

Gibson, S.Z. 2013a. A new hump-backed ginglymodian fish (Neopterygii, Semionotiformes) from the Upper Triassic Chinle Formation of southeastern Utah. Journal of Vertebrate Paleontology 33: 1037–1050. 

Gibson, S.Z. 2013b. Biodiversity and evolutionary history of †Lophionotus (Neopterygii: †Semionotiformes) from the western United States. Copeia 2013: 582–603.

Milner, A.R.C., Mickelson, D.L., Kirkland, J.I., and Harris, J.D. 2006. Reinvestigation of Late Triassic fish sites in the Chinle Group, San Juan County, Utah: new discoveries. In: A Century of Research at Petrified Forest National Park: Geology and Paleontology (Eds. Parker, W.G., Ash, S.R., and Irmis, R.B.). Museum of Northern Arizona Bulletin 62: 163–165.

Schaeffer, B. 1967. Late Triassic fishes from the western United States. Bulletin of the American Museum of Natural History 135: 289–342.

Wednesday, June 2, 2010

On Cleaning an Ancient Fish

The word “fossil” often conjures images of Tyrannosaurus rex skulls, mammoth femurs, or other large bones. But those aren’t the only ones that survive through the millennia, and certainly aren’t the only ones that have importance.

KU Biodiversity Institute graduate students Sarah Spears and Kathryn Mickle study prehistoric fishes. Their fossils are so small that, in order to get them ready for study, Sarah and Kathryn have to use tiny tools to remove excess rock. Sometimes, even metal tools are too rough and inexact, so they switch over to porcupine quills — just sharp and flexible enough to clean tiny fish bones.

Wednesday, December 22, 2010

A Symposium and an Ancient Seaway

This past month I co-chaired a technical session at the national Geological Society of America conference in Denver. The session was entitled "Paleontology, Paleobiogeography, and Stratigraphy of the Late Cretaceous North America Seas: A Tribute to Bill Cobban." Dr. Cobban is a scientist at the US Geological Survey who has over 60 years of experience working on the statigraphy and paleontology of the Late Cretaceous Western Interior Seaway. The Western Interior Seaway (WIS) ran through the middle of the U.S. during the Cretaceous (about 65-100 million years ago) and was home to some amazing seafaring creatures, including the mosasaur that hangs over the doorway to the KU Natural History Museum.

I gave a talk entitled "Using GIS to investigate bias in the fossil record: a case study of the Late Cretaceous Western Interior Seaway of North America." In that talk I presented some tests that I performed to assess how good the fossil record in the WIS is. I was curious if the fossil record is biased in any way that would prevent us from mapping out the ranges of prehistoric species. The factors that I'm particularly interested in are competition, environmental change, and whether biological interactions between species are more or less important than environmental changes in determining which species go extinct and which do not.

I relate my research to the current biodiversity crisis: when you are trying to understand how invasive species, habitat fragmentation, and climate change are going to affect species in the future, there is a WEALTH of information (~544 million years in fact) in the fossil record that provides exactly that. The fossil record tells stories of how critters responded to species invasions and habitat loss and it teaches us about the effects of climate change and sea level fluctuations. These are the very factors that conservationists consider when attempting to save habitats and species.

One of the symposium's invited talks was by Neil Landman, a renowned cephalopod paleontologist from the American Museum of Natural History. He spoke eloquently on the life history of scaphite ammonites. Scaphites are shelled cephalopods (similar looking to modern Nautilus, also related to squid and octopi), but instead of having a properly coiled shell (like the Nautilus, their shell straightens out a bit at the end. Neil is probably one of the world's expert on scaphites. His talk described his latest interpretation of how these animals caught prey, what kind of prey, how they swam, at what orientation they held their body in the water column, how they reproduced, etc. Late Cretaceous cephalopds got SUPER weird, so this sort of talk is *really* exciting for folks like me who are into cephalopods and life in general in the WIS.

Overall, we had a very nice day talking about the current status of Late Cretaceous WIS research from a variety of geologically related fields: geochronology (age-dating the rocks), biology (mostly cephalopods, but also foraminifera, mosasaurs, sharks, etc.), biogeography, mapping, stratigraphy, and biostratigraphy. We are still working to better understand a number of the animal groups and how they might be used to date rocks. The great news is that it looks like the fossil and rock records are good enough to test many of our questions!

Tuesday, August 2, 2011

Recent Discovery in China Relates to KU Research

fossil

While a recent discovery may change textbooks and the way that many scientists think about bird and dinosaur evolution, it comes as no surprise us.

This week, Xing Xu, H. You, K. Du and F. Han published in the journal Nature a reanalysis of early bird evolution. The analysis knocks Archaeopteryx off its perch as a grandfather to later birds. 

KU has been the central hub for the discovery of the fossil bird beds in the Early Cretaceous of China with the description of the primitive bird, Confuciusornis, and has continued to be involved with all the new discoveries coming out of this region in part through an alumnus of the KU vertebrate paleontology program.

The alumnus, Zhonghe Zhou, presently leads Chinese studies in that region and was recently elected to the prestigious National Academy of Sciences.  Zhou and one of the paper’s authors, Xing Xu, had already precipitated a revolution in our understanding of bird evolution with the discovery of the four-winged gliding bird/dinosaur, Microraptor. With Microraptor, they showed that bird flight began with gliding. 

Zhou has a long-term collaboration with KU vertebrate paleontology researchers at the Biodiversity Institute. Preparator David Burnham, collection manager Desui Miao and I regularly visit China to work on early birds. Our research also has suggested that Archaeopteryx along with other archaic birds represents a side branch that split off much earlier than the new bird, Xiaotingia, and its sister Anchiornis, another four-winged gliding animal. 

While the recent paper in Nature calls these animals “feathered dinosaurs,” we think that they and their common ancestor with modern birds can be best considered true birds. Rather than removing Archaeopteryx from Aves because its avian features were shared with birdlike dinosaurs, we place a stronger emphasis on these features thereby pulling the dinosaur-like birds into Aves. This limits these flying, feathered animals to the Class Aves and pushes the origin of birds into the Early Jurassic or Late Triassic at about the same time as the dinosaurs themselves.