Feature this post

Friday, November 20, 2015

Dinner or Dinosaur? Both!


This Thanksgiving, don’t think of the yearly tradition as just carving up a turkey. In reality, you’re dissecting your very own dinosaur.

KU Paleontologist David Burnham studies ancient raptors of all sizes. Studying these ancient relatives fills the gaps between raptors of the past and the turkeys we eat today. Upon studying this lineage, one can see that turkeys and raptors have much more in common than you may think, despite differences in how we traditionally picture a “bird.”

“The public’s perception of what a bird may be might not be the definition a scientist would use,” said Burnham.

The public largely defines birds by their feathers and flight capabilities. By comparison to their ancestors, not only do both prehistoric raptors and modern birds share feathers, but many living birds also either rarely or never use flight including ostriches, emus, cassowaries and turkeys. 

“The loss of flight has evolved several times throughout that lineage,” said Burnham. “If we want to draw a line when theropod dinosaurs became strictly avian, well, we’re still refining that even today due to the enormous amount of new discoveries.”

What’s important to remember is that dinosaurs never fully became extinct. The ones that survived mass extinction merely changed. Birds such as turkeys and chickens share their lineage with theropods, or two-legged meat-eating dinosaurs. The skeletal structures of turkeys and extinct theropods such as Velociraptor, Bambiraptor and Microraptor retain several similarities in particular. 

Here are some points to look for while dissecting your “dinosaur” this Thanksgiving:

  • Wishbone - The furcula, or wishbone, is a major connection between the turkey and its ancient theropod ancestors. The furcula is made up of two formerly separate collarbones, fused together. This evolutionary change aided in flight capabilities of ancient raptors such as Microraptor, and continues to help modern birds, such as turkeys, reach liftoff.
  • Wings - The turkey wing deserves careful inspection. The fleshed-over tip is where claws protruded from theropod arms such as those of Velociraptor, Bambiraptor, and even the massive Dakotaraptor. Imagine those on your dinner plate! As theropod dinosaurs evolved, their arms became longer and those claws were covered by flesh forming wings suitable for extended flight – an easily recognizable feature of avian species we see today.

  • The fleshed-over tip of a turkey wing, where raptor claws once protruded to snatch prey
  • Thighs and drumsticks - These are often the most sought after pieces of the feast, and still quite similar to the legs of theropods. This leg structure allowed raptors to reach impressive ground speeds; Velociraptor is thought to have been able to run as fast as 40 miles per hour! The turkey on your table is no slowpoke either thanks to this ancient design, with a top running speed of 25 miles per hour. 

Turkey hips (left) as compared to  those of a pre-historic raptor (right)

While the turkey still possesses many remarkable features harkening back to its raptor relatives, there are some things we can be thankful were lost during evolution.

“Of course, turkeys don’t have teeth,” said Burnham, “and that’s probably a good thing.”

Friday, June 12, 2015

Bad Banana: Beautiful plant going bad?

The banana family, scientifically called Musaceae, comprises two genera and about 80 species from Africa and Asia.  Edible bananas and plantains both belong to the genus Musa.  The bananas we eat do not grow on a banana "tree".  Rather, the plant is an herb, with an underground rhizome, a "stem" made of tightly-packed stems of the large showy leaves, and the inflorescence where each flower produces one edible banana.  Bananas are thought to have been domesticated about 8000 BC in southeast Asia; those soft tiny black specks at the center of the banana fruit are sterile - they cannot be planted for new plants.  The plant forms suckers (root sprouts) that help create a clump of banana plants or that are separable for new plants.  While bananas are eaten raw, plantains must be cooked.  Both are delicious and of immense value in the tropical larder.  Scientists believe that these edible bananas are actually hybrids from two wild species, Musa acuminata and Musa balbisiana.  Costa Rica is a major exporter of bananas; forests have been cut to grow large monocultures and high pesticide use is implicated as a threat to caiman populations.

Banana plants are beautiful!  It is not surprising that we see ornamental bananas commonly planted along roads and in gardens -  those big showy leaves and big colorful infloresences bring that lush "tropical" touch.  One spectacular introduced ornamental banana is Musa velutina.  I noted this beauty commonly grown on our route and I am wondering if native arthropods on native Zingiberales can expand their host range to this exotic.  I also wonder if the viable seeds of M. velutina can grow - perhaps spread in bird droppings.  It is not uncommon for beautiful garden plants to break free, run rampant, and become scourges, no matter how "pretty" they appear.

Musa velutina, an introduced ornamental banana growing in Costa Rica
Musa velutina seeds are viable, unlike the bananas we eat
Bird food!

Monday, July 13, 2015


Anyone wanting to participate in a field expedition must have a spirit for adventure, adaptability, and curiosity. Any travel takes one out of the familiar comfort zone; but if a participant is not happy, it negatively affects the entire group.  My task in selecting participants is tough, trying to determine the above qualities and the fit with the group (both for travel and in teams collecting data).  The biggest test comes usually with the first day of hiking —are you physically fit to hike for several hours?  Or, with the first rainfall—will you complain when we get caught in the rain?  Some students daydream of doing international fieldwork, but only when we try it out can we be sure that long hours with wet clothes and a soggy lunch are trivial compared to the exhilaration of being in the field, doing field research.  Fieldwork is not for every biologist; it is okay.....and okay to learn this sooner than later.

Manuel Antonio National Park, Costa Rica
Fieldwork goes on, rain or shine!
Daneil taking a break for lunch, during a shower
KU students in thermal spring pool, Costa Rica

Tuesday, June 9, 2015

Costa Rica 2015 blog: Introducing Caroline

I am Caroline Chaboo, Director of this 2015 program to Costa Rica.  Normally, I head to Peru every June with students.  However, this year Costa Rica is on the menu due to several factors and opportunities. The University of Costa Rica and the University of Kansas have a long established relationship of collaboration in research, education and visits.  This program is supported by KU's Office of International Programs.

In 2014, I expanded one aspect of my Peru research, arthropod communities on Zingiberales plants, and sought a  second site for comparative study.  Two UCR colleagues, one I met more than 10 years ago, developed a grant proposal which was funded.  One UCR collaborator visited KU recently (his first visit to the USA). Our plan is to develop a Central American site and study the diversity (taxonomic and food web relations) of the arthropods that are associated with these distinctive Zingiberales plants (familiar ones are bananas and ginger, but flowers are also sold in shops).

The field course program developed as a way to initiate a joint education program alongside the larger research so we could bring KU and UCR students together, conducting research towards their first scientific publication as they gained exposure to rich tropical habitats and acquired several field skills. 

Some KU participants opted to pursue grants for research, which they were awarded. We have met several times to discuss everything, from travel medicine to hiking shoes.  I am excited to renew collaborations with the excellent UCR biology faculty and to expose KU students to Costa Rica = "rich coast" = rich biodiversity. 

Follow all of our posts here

Monday, April 13, 2015

Unpacking Antarctica

Nearly four months after the KU Antarctica team returned to campus, the 5,000 pounds of fossil material they collected in Antarctica will arrive at KU on Monday, April 13. 

Staff and students will start unloading 50-60 wooden crates of  material that is 260 to 180 million years old, from the Permian and Jurassic periods.  

Although most people think of Antarctica as a barren, cold environment, 200 million years ago it was a land of lush forest – a forest that now permineralized can yield clues to the climate change of the past, and how plants today may react to climate change as well.

The fossil material will help scientists study floral changes during the Jurassic in the Transantarctic Mountains of Antarctica. 

“This research is important in understanding what climate and environment was like at the poles during one of Earth’s past greenhouse climates and how plants responded to both climate changes and instantaneous disruptions through the rise of volcanoes,” said Rudy Serbet, collection manager of paleobotany at KU Biodiversity Institute and a team leader for the trip. “These sorts of times and environmental stresses are key to understanding how current climate change may effect high latitude plants.”

During the seven weeks they were in Antarctica, the group took several camping field trips “out to the ice,” including the  Odell Glacier area and the Allan Hills. 

No staff or students have seen the material in the intervening months as it made its way from Antarctica to California to Kansas. 

"Today is like Christmas in April,” said Paleobotany Curator Edith Taylor, lead PI on the National Science Foundation grant that funded the research.

Archived posts from the group are available here

Monday, March 17, 2014


Panorama conversation project

One of the challenges has been to figure out how to plug in the special vacuum units that the conservation team is using. Unlike a home, these can’t be plugged in and then drag a cord across the floor. A cord could damage the plants, or even snag an animal mount.

To solve this puzzle, exhibits director Bruce Scherting went up into the attic above the Panorama. Using outlets near the Panorama’s upper lights, he plugged in extension cords and fed them thirty feet to the floor. But that led to another issue: the cords might chip the paint at the top of the exhibit if staff pulled them along the surface. Pieces of hose, cut into two-foot lengths and eased over the cords turned out to be the perfect solution. The hoses hooked on the lip of the exhibit and dangled the cords to the floor, where sandbags held them in place.